ESI-IM-MS and Collision-Induced Unfolding That Provide Insight into the Linkage-Dependent Interfacial Interactions of Covalently Linked Diubiquitin.
نویسندگان
چکیده
Understanding protein higher order structure and interfacial interactions is crucial to understanding protein binding motifs and cellular function, that is, an interactome. Polyubiquitylation is a post-translational modification that functions as a tag for a diverse array of cellular processes, wherein differences in chain length, branching, and linkage site encode different cellular functions. Investigation of covalently linked diubiquitin (diUbq) molecules specifically selects for the effect of covalent linkage site on the conformational preference of the molecule and the interfacial interactions between the subunits. Here, we report results for electrospray ionization ion mobility-mass spectrometry (ESI-IM-MS) and collision-induced unfolding (CIU) analysis of four diUbq ions to provide new understanding of the differences in subunit interfacial interactions and conformational preferences induced by the four most common covalent linkage sites. The specific hydrophobic patch interface adopted by K48-linked diUbq results in unique CIU fingerprints dominated by conformational broadening and primarily gradual unfolding, as opposed to the distinct transitions through gas-phase unfolding intermediates observed of K6-, K11-, and K63-linked diUbq. Comparison of the intermediate conformational families of K6-, K11-, and K63-linked diUbq suggests that K6- and K11-linked diUbq adopt a mixture of conformers stabilized by either electrostatic interactions or hydrophobic interactions involving the I36 hydrophobic patch. Furthermore, conditions favoring the partially folded A-state of monoubiquitin, that is, methanolic solution, induce conformational collapse and distinct unfolding intermediates for all four linkage types, providing an end-point at which all solution-phase conformational "memory" has been lost.
منابع مشابه
Formation and reshuffling of disulfide bonds in bovine serum albumin demonstrated using tandem mass spectrometry with collision-induced and electron-transfer dissociation
Thermolysin hydrolyzates of freshly isolated, extensively stored (6 years, 6 °C, dry) and heated (60 min, 90 °C, in excess water) bovine serum albumin (BSA) samples were analyzed with liquid chromatography (LC) electrospray ionization (ESI) tandem mass spectrometry (MS/MS) using alternating electron-transfer dissociation (ETD) and collision-induced dissociation (CID). The positions of disulfide...
متن کاملMolecular Simulation-Based Structural Prediction of Protein Complexes in Mass Spectrometry: The Human Insulin Dimer
Protein electrospray ionization (ESI) mass spectrometry (MS)-based techniques are widely used to provide insight into structural proteomics under the assumption that non-covalent protein complexes being transferred into the gas phase preserve basically the same intermolecular interactions as in solution. Here we investigate the applicability of this assumption by extending our previous structur...
متن کاملThe use of ion mobility mass spectrometry to assist protein design: a case study on zinc finger fold versus coiled coil interactions.
The dramatic conformational change in zinc fingers on binding metal ions for DNA recognition makes their structure-function behaviour an attractive target to mimic in de novo designed peptides. Mass spectrometry, with its high throughput and low sample consumption provides insight into how primary amino acid sequence can encode stable tertiary fold. We present here the use of ion mobility mass ...
متن کاملSurface-Induced Dissociation Mass Spectra as a Tool for Distinguishing Different Structural Forms of Gas-Phase Multimeric Protein Complexes.
One attractive feature of ion mobility mass spectrometry (IM-MS) lies in its ability to provide experimental collision cross section (CCS) measurements, which can be used to distinguish different conformations that a protein complex may adopt during its gas-phase unfolding. However, CCS values alone give no detailed information on subunit structure within the complex. Consequently, structural c...
متن کاملLigand binding and unfolding of tryptophan synthase revealed by ion mobility-tandem mass spectrometry employing collision and surface induced dissociation
Understanding protein tertiary and quaternary structures is crucial to a better understanding of their biological functions. Here we illustrate for tryptophan synthase that tandem mass spectrometry (MS/MS) reveals not only protein subunit architectures, but also protein unfolding behavior when coupled with ion mobility (IM). In the present study, we verified the subunit arrangement with surface...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Analytical chemistry
دوره 89 18 شماره
صفحات -
تاریخ انتشار 2017